Oxidation of methoxybenzenes by manganese peroxidase and by Mn3+.

نویسندگان

  • J L Popp
  • T K Kirk
چکیده

Manganese peroxidase, produced by some white-rot fungi during lignin degradation, catalyzes the oxidation of Mn2+ to Mn3+. Whereas Mn3+ is known to oxidize phenolic compounds, its role in lignin degradation is not clear. We have used a series of methoxybenzenes with E1/2 values of 1.76-0.81 V (vs saturated calomel electrode) to investigate the oxidizing ability of Mn3+ chelates generated chemically and enzymatically. Although lignin peroxidase has been shown to oxidize high potential congeners, our results show that manganese peroxidase, or physiological concentrations of Mn3+, oxidize only the lower potential congeners. In addition, Mn3+ increased the rate of decay of the cation radical of 1,2,4,5-tetramethoxybenzene. The kinetics of decay continued to be first order, so Mn3+ does not oxidize the cation radical itself, but probably oxidizes a neutral dienyl radical derived from the cation radical. This indicates a possible role for Mn3+ in lignin degradation, as neutral dienyl radicals are proposed to be products of lignin peroxidase action.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The oxidation of manganese by illuminated chloroplast preparations.

It has long been known that manganese is an essential micronutrient of plants. Although the precise functions of manganese are unknown there is evidence that it may be concerned in chlorophyll synthesis, photosynthesis, respiration and nitrate assimilation. Decreased photosynthesis under conditions of manganese deficiency was originally attributed to the diminished chlorophyll content, but more...

متن کامل

Lignin peroxidase oxidation of Mn2+ in the presence of veratryl alcohol, malonic or oxalic acid, and oxygen.

Veratryl alcohol (3,4-dimethoxybenzyl alcohol) appears to have multiple roles in lignin degradation by Phanerochaete chrysosporium. It is synthesized de novo by the fungus. It apparently induces expression of lignin peroxidase (LiP), and it protects LiP from inactivation by H2O2. In addition, veratryl alcohol has been shown to potentiate LiP oxidation of compounds that are not good LiP substrat...

متن کامل

Microbial manganese(III) reduction fuelled by anaerobic acetate oxidation.

Soluble manganese in the intermediate +III oxidation state (Mn3+ ) is a newly identified oxidant in anoxic environments, whereas acetate is a naturally abundant substrate that fuels microbial activity. Microbial populations coupling anaerobic acetate oxidation to Mn3+ reduction, however, have yet to be identified. We isolated a Shewanella strain capable of oxidizing acetate anaerobically with M...

متن کامل

One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium.

The abilities of whole cultures of Phanerochaete chrysosporium and P. chrysosporium manganese peroxidase-mediated lipid peroxidation reactions to degrade the polycyclic aromatic hydrocarbons (PAHs) found in creosote were studied. The disappearance of 12 three- to six-ring PAHs occurred in both systems. Both in vivo and in vitro, the disappearance of all PAHs was found to be very strongly correl...

متن کامل

Thiol and Mn2+-mediated Oxidation

Horseradish peroxidase has been shown to catalyze the oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) and benzyl alcohol to the respective aldehydes in the presence of reduced glutathione, MnC12, and an organic acid metal chelator such as lactate. The oxidation is most likely the result of hydrogen abstraction from the benzylic carbon of the substrate alcohol leading to eventual dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Archives of biochemistry and biophysics

دوره 288 1  شماره 

صفحات  -

تاریخ انتشار 1991